3 research outputs found

    Scalar-Tensor Models of Normal and Phantom Dark Energy

    Get PDF
    We consider the viability of dark energy (DE) models in the framework of the scalar-tensor theory of gravity, including the possibility to have a phantom DE at small redshifts zz as admitted by supernova luminosity-distance data. For small zz, the generic solution for these models is constructed in the form of a power series in zz without any approximation. Necessary constraints for DE to be phantom today and to cross the phantom divide line p=ρp=-\rho at small zz are presented. Considering the Solar System constraints, we find for the post-Newtonian parameters that γPN<1\gamma_{PN}<1 and γPN,01\gamma_{PN,0}\approx 1 for the model to be viable, and βPN,0>1\beta_{PN,0}>1 (but very close to 1) if the model has a significantly phantom DE today. However, prospects to establish the phantom behaviour of DE are much better with cosmological data than with Solar System experiments. Earlier obtained results for a Λ\Lambda-dominated universe with the vanishing scalar field potential are extended to a more general DE equation of state confirming that the cosmological evolution of these models rule them out. Models of currently fantom DE which are viable for small zz can be easily constructed with a constant potential; however, they generically become singular at some higher zz. With a growing potential, viable models exist up to an arbitrary high redshift.Comment: 30 pages, 4 figures; Matches the published version containing an expanded discussion of various point

    Crossing the Phantom Divide: Theoretical Implications and Observational Status

    Get PDF
    If the dark energy equation of state parameter w(z) crosses the phantom divide line w=-1 (or equivalently if the expression d(H^2(z))/dz - 3\Omega_m H_0^2 (1+z)^2 changes sign) at recent redshifts, then there are two possible cosmological implications: Either the dark energy consists of multiple components with at least one non-canonical phantom component or general relativity needs to be extended to a more general theory on cosmological scales. The former possibility requires the existence of a phantom component which has been shown to suffer from serious theoretical problems and instabilities. Therefore, the later possibility is the simplest realistic theoretical framework in which such a crossing can be realized. After providing a pedagogical description of various dark energy observational probes, we use a set of such probes (including the Gold SnIa sample, the first year SNLS dataset, the 3-year WMAP CMB shift parameter, the SDSS baryon acoustic oscillations peak (BAO), the X-ray gas mass fraction in clusters and the linear growth rate of perturbations at z=0.15 as obtained from the 2dF galaxy redshift survey) to investigate the priors required for cosmological observations to favor crossing of the phantom divide. We find that a low \Omega_m prior (0.2<\Omega_m <0.25) leads, for most observational probes (except of the SNLS data), to an increased probability (mild trend) for phantom divide crossing. An interesting degeneracy of the ISW effect in the CMB perturbation spectrum is also pointed out.Comment: Accepted in JCAP (to appear). Comments added, typos corrected. 19 pages (revtex), 8 figures. The numerical analysis files (Mathematica + Fortran) with instructions are available at http://leandros.physics.uoi.gr/pdl-cross/pdl-cross.htm . The ppt file of a relevant talk may be downloaded from http://leandros.physics.uoi.gr/pdl-cross/pdl2006.pp
    corecore